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ABSTRACT

' This paper suggests a simple expert system frame and provides the domain knowledge for
the optimal mesh design and the prediction of the error in energy norm for the problem of
plane elasticity using the hp-extension in the finite element method. The expert system
monitors the progress of the analysis, guides the user through the various steps and is able
to reason about its own advise. In an example the user-expert communication is shown
and the superiority of the results is demonstrated.

Keywords: expert systems, finite element method, mesh design, hp-extension, elasticity,
adaptive methods, error estimation.



INTRODUCTION

In recent years, the p-version of the finite element method has attracted considerable
interest , as it has been shown theoretically and practically, that higher accuracy at lower
cost and better rates of convergence can be obtained as in the h-version of the FEM.

However, the performance of h- and p-version hinge on a proper mesh design especially
in the neighborhood of singular points and lines in the exact solution of the problem.
Whereas in the h-version adaptive finite element codes are already available , which con-
struct optimal meshes with respect to the minimization of some norm of the approximation
error, only few results are known for an optimal mesh design in the p-version. Yet, it has
been shown theoretically and numerically for some model-problems, that a proper mesh-
refinement combined with an increase of the polynomial degree, i.e. an hp-version of the
FEM, leads to exponential rate of convergence and superior accuracy.

Usually it is impossible to construct a priori the optimal relation of polynomial degree and
finite element mesh in practical cases, where often dozens of 'critical areas', i.e. regions
around singularities or around strongly curved boundaries occur.

This paper suggests an ezpert system, which uses a posteriori information from a cheap
starting computation for a proper mesh design in the hp-version. The goals are the fol-
lowing:

The input data of the user should be kept to a minimum'

- The user should get rational support for his decisions about the mesh design'

- The system should be able to monitor the progress of the analysis

- It should advise the user at each time about the next steps to be taken'

- -1rhe system should be able do reason about its own advise;
'-

- -1he expert system frame should be seperated in a problem-independent part ,the 'in-
ference engine" and the problem dependent 'knowledge base"

- A user should be able to get superior results with the help of the expert system, i.e.
highest accuracy should be achieved for given cost'

The tools of the expert system are , among others, a p-version finite element code and an
interactive graphical mesh generator.
Numerical examples show, that by this approach an exponential rate of convergence and
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superior accuracy at low computational cost and storage is obtained in practical problems
with typically 10 to 20 singular points, i.e. stress concentrations at reentrant corners, crack
tips or change of boundary conditions.

In the next chapter we will give an outline of the basic ideas of an expert system in CAD
applications. Then we will define the rules for an optimal mesh design in the hp-version. In
the final section we will show an example of the application of the system and an appendix
will summarize the mathematical foundation of the expert system's rules.

A FINITE-ELEMENT-EXPERT-SYSTEM

The basic concept

Expert systems are being considered one of the most promising developments in modern
computer science. Up to now they have mostly been applied in areas, where no clearly
defined algorithmic strategies are availablesuch as prediction, interpretation, diagnosis
and monitoring. For an excellent introduction into knowledge based expert systems we
refer to /1/.

Knowledge based expert systems are expected to be successfully applicable if (see /1/)

- experts are able to solve problems considerably better than novices

- rules for a successful problem solution can be defined

- heuristics are essential to solve the problem

- the problem domain is of limitted complexity.

Knowledge based systems in engineering analysis and especially computer aided design
have been adressed only recently (see e.g. /2/). Yet there seems to be a wide range
of possible applications as highly sophisticated computer programs are available, most of
them needing a considerable amount of expertise, if used in a reasonable way.

Expert systems usually consist of problem independent inference engine., and problem
dependent knowledge base. Frequently the knowledge in a field can be separated into two
parts (see /3/). Surface knowledge in the context of CAD applications consists, for example,
of rules such as which algorithm to use when and with what kind of input data. This part
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of the knowledge is well suited to be handled by rule-based expert systems. Deep knowledge,
on the other hand, consists of the knowledge about the underlying problem structure. For
example, in our context of an optimal mesh design it consists of mathematical rules, which
permit to predict together with heuristics the error of a finite element computation in
certain norms.

Before we elaborate on an expert system for the optimal mesh design in the hp-version of
the finite element method, some general remarks on what an expert system in CAD should
do have to be made. Let us first focus on how a human expert is expected to help a user
in the application of sophisticated computer programs, e.g. a finite element program.

A novice user of the program should be able to ask the expert at each state of the analysis,
what he has to do next. The expert has to be able to guide the user through an analysis,
he has to have the thorough knowledge about the application of the program.

The expert has to know at each stage, which subtasks have already been performed, so he
has to monitor the analysis. The user may ask the expert, why he should do something, so
the expert has to be able to reason about the advise he gives. Last but not least the user
has to be able to achieve with help of the expert a result which is superior to the result
which he would get in a comparable time without the expert.

These are exactly the characteristics of the prototype expert system which shall be sug-
gested in this paper. Clearly, such a system is more than a 'user-friendly' program, because
usually traditional programs have hardly any part of 'self-explanation' or knowledge about
their own optimal use, 'knowledge' and its application is not seperated and there is seldom
any guaranty about achieving optimal or nearly optimal results.

It will be, of course, an enormeous task to create an expert system with the above men-
tioned characteristics for a complete finite element analysis, starting from the right choice
of mathematical models and material properties to the final dimensioning or design of the
underlying structures. So we will restrict ourselves to the basic principles in the relatively
small subtask of the design of optimal meshes and an optimal use of the p-version of the
finite element method.

How does a CAD expert work ? First, he has to set up a clearly defined goal. In our context,
the goal will be to perform a finite element computation on an optimal combination of
element degree and mesh , i.e. the highest possible accuracy should be obtained for a
certain amount of computer time and storage. To achieve the final goal, it has to be split
into subgoals, each of which will be treated in the same way as the main goal. Finally, a
terminal subgoal can be achieved by performing a task. This can be either the application
of a certain algorithm which we will call external task or the answer to a question, e.g.
"Are there reentrant corners in the domain of computation ?". These tasks will be called
internal tasks.

External tasks can have the logical status 'TRUE', if they have been performed correctly,
'FALSE', if they cannot be performed and 'UNKNOWN', if they have not yet been at-
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tempted. The answer 'YES' or 'NO' to an internal task causes the definition of new
subgoals or the change of the logical status of other subgoals.

Thus a tree of. ubgoas is created, which defines the sequence of tasks which have to be
performed under problem-specific conditions to achieve the final goal.

The ezpert-user-interface and the 6aic data structure

In this section we will describe the rule-based system which handles the 'surface knowledge'
of the problem. The 'deep knowledge' will be explained in the section about the optimal
mesh design in the hp-version of the finite element method.

A user can select from several options in his communication with the expert system. The
more important features are:

STATUS : He can acquire the status of a special project, i.e. he can find out at any time,
which subgoals have already been achieved.

ADVISE : He can ask the expert system, which task should be performed next.

WHY : He can ask, why he should perform a special task. He gets recursively the list of
subgoals up to the root (final goal). An example is given in the final section of this paper.

The possibility to ask the question 'WHY' should not only be seen as a convenient way to
'educate' the user. More than that it is a possibility to 'discipline' the domain expert to
justify his rules in detail. This justification should even go beyond the rule base itself to
a rule manual, where a final explanation of the rules is given. The appendix of this paper
should be seen as our rule manual for the optimal mesh design in the hp-version.

The system is running on a multi-process microcomputer (APOLLO DN420), one pro-
cess executing the inference engine, the other process being the (algorithmic) application
program. A typical outline of the screen can be seen in figure (4) of the final section.

The expert system needs two data structures, the rule base for the problem, i.e. the list
of rules to achieve the final goal, and a project base where the status (TRUE, FALSE,
UNKNOWN) of all tasks and goals of a special project at any time is stored.

Rules in the rule base have the following structure:

GOAL <nr> : <description of subgoal>
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HAS INITIALLY THE LOGICAL STATUS : <true - false - unknown>

AND IS TRUE IF : <subgoal nr> AND-OR <subgoal nr> ... AND-OR <subgoal nr>
IS TRUE

Internal tasks are defined as follows:

IF <question> IS ANSWERED WITH 'NO'

THEN <subgoal nr> GETS STATUS <true-false--unknown>

<subgoal nr> GETS STATUS <true-false-unknown>

The project base can be changed from two sides:

a) From the inference engine itself: The inference engine tries to change the status of all
subgoals from 'UNKNOWN' to 'TRUE' or 'FALSE' by performing logical operations to
infer the status of a father-node from the status of its subgoals. Furthermore, an internal
task can change the status file.

b) From algorithms to be used in the execution of the whole system: An algorithm, i.e. an
external task in the solution process can change the status in order to give the message to
the inference engine about the (successful) execution of the algorithm. This communication
can be achieved with only minor changes in the application programs (i.e.a subroutine-call).

The structure of this rule based system is of course very simple compared to large scale
expert systems. Yet, even this simple system proves to be very effective due to the detailed
and specific rules of the 'deep knowledge' which shall be descibed in the following.
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THE RULES FOR AN OPTIMAL MESH DESIGN IN THE HP-VERSION

The successful design of an expert system hinges on a proper formulation of rules, prin-
ciples, heuristics, experience (in general expertise) which can be incorporated into the
knowledge based expert system frame. We will focus in this section on the basic prin-
ciples of an optimal mesh design for the finite element analysis. For a summary of the
mathematical foundation we refer to /4/ and the appendix.

First of all , the expert system has to determine whether a special problem belongs to
its field of applications. We will restrict in this paper to linear, two-dimensional elas-
ticity problems on polygonal domains although a generalization of our approach to more
complicated cases is possible.

The finite element analysis based on our approach is performed in the following steps:

1. Interactive graphical mesh generation of a very crude basic mesh, which describes only
the geometry of the problem.

2. Decision about the critical and noncritical elements of the basic mesh. Noncritical ele-

ments are those, where exponential rate of convergence can be achieved only by increasing
the polynomial degree, critical are those, where mesh-refinement is necessary.

3. Extraction of critical data about the solution from a computation on an elementary
mesh which can easily be constructed from the basic mesh. Critical data are, for example,
stress intensity factors and strengthes of the singularities at reentrant corners. These data
can be computed cheaply with sufficient accuracy using low p-degrees.

4. Prediction of the performance of various optimal mesh and degree combinations using
the extracted critical data of step 3.

5. Graphical presentation of the predicted performance to the user. He can now decide
on an optimal combination of mesh and polynomial degree which fits best to the desired
accuracy and available resources of computer time and storage.

6. Mesh refinement for the final computation.

7. Finite element computation and assessment of the reliability of the computed data on
the optimally refined mesh.

8. Presentation of the basic results to the user. Postprocessing, if the results are accepted;
using the results analogously to step 4, if the results are rejected, because the original
prediction was not accurate enough.
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In contrast to adaptive finite element codes the final mesh is constructed in only one step
after the preliminary computation in the basic mesh. Therefore, only minor additional ef-
fort for mesh-construction is necessary. In practical examples the computation on the final
mesh took between 80 and 90 % of the overall computation, thus the basic computation
and error prediction being nearly costless.

One basic idea is that a very crude basic mesh is classified into critical and noncritical areas
(step 2). As the ultimate goal is to achieve highest accuracy for lowest computational cost,
it is desired to perform an extension process (see /5/) which yields the optimal exponential
rate of convergence in some error norm, in our case in the energy norm. As the p-version
converges for smooth exact solutions with the desired exponential rate, a mesh refinement
in smooth areas, i.e. far from reentrant comers or points of change of boundary conditions
is not necessary. Moreover it turns out that in most engineering cases the accuracy of the
p-version in noncritical areas is so high that the error there can be neglected compared to
the overall error. Therefore the error prediction (step 4) considers only critical elements.

It is assumed that the exact solution there has essentially a 1-dimensional character. This
principle is justified by well known results from the theory of partial differential equations
For example , the solution near a reentrant corner behaves similar to Kr" , where K is the
stress intensity factor, r the distance and at the strength of the singularity . Therefore an
auxiliary one-dimensional problem can be analyzed with extensive theoretical results being
available in /6/. It has been shown there, that it is optimal to refine the mesh geometrically
towards the singular point and increase the polynomial degree p simultaneously. The
optimal relation between the number of refinement steps and, the degree p depends on
the strength of the singularity and can be computed explicitly. It can be proven that
the optimal geometric progression factor in the hp-extension is .15 yielding a very strong
refinement towards the singularity. Moreover it is possible to give an explicit functional
relating the polynomial degree p, the number of refinement layers n and the strength of
the singularity to the error in the energy norm.

This 1-D-analysis can be modified to be applicable to the two-dimensional case (see ap-
pendix and /4/) yielding the possibility to predict the error in a critical area for all com-
binations of geometric mesh refinement and polynomial degree p. This error prediction
needs the stress intensity factors and the strength of the singularity as input data , yet
these quantities can be computed cheaply with sufficient accuracy on the crude elementary
mesh in step 3.

Moreover, if stress intensity factors and strengthes of all singularities in the exact solution
are approximately known, a simple optimization procedure can predict optimal combi-
nation of polynomial degree and refinement at the various singularities for each desired
number of degrees of freedom. The goal-functional for the optimization is the predicted
error, variables are the polynomial degree p and the number of refinement layers n at the
singularities i = 1, ...s. The number of degrees of freedom which is related to a mesh-degree
combination is restricted to some upper bound No
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In practice, not only one but a sequence of optimization processes is performed with the
bound No ranging in several steps from NMIN to NMAX thus showing the user a variety
of optimal mesh-degree combinations and the related cost and predicted error.

AN EXAMPLE

A communication with the expert system

In the first part of this section we will show an example of a communication between the
expert system and a user. in the second part the 'superiority' of the results is shown
and thus the 'expertise' of the system is demonstrated. The computational results of this
second part are taken from /4/.

Figure (1) shows the domain of computation and the loads of the model problem. The
domain has 9 reentrant corners (including the two tips of the crack interior to the do-
main), constant traction is applied along the edge CD and symmetry boundary condition
is imposed along AB . Isotropic material with E = 3.0e8 psi and v = .3 was assumed.

Figure (2) shows the basic mesh of this problem as it was constructed interactively in the
expert system using a modification of a meshgenerator of MODULEF /7/. The basic mesh
is as coarse as possible, only modelling the geometry of the problem.

In the next step of the analysis the decision about critical and noncritical elements is made.
Each element is critical, because each has at least one reentant corner as a node.

The next step extracts critical data about the solution. As has been shown, the stress
intensity factors K and exponents a of the singular functions provide means to predict the
error of the energy norm for all combinations of (geometric) mesh and polynomial degree
p. For a sufficiently accurate extraction of stress intensity factors it is necessary to have a
mesh such that at most one singular point is in each element. Therefore out of the basic
mesh an elementary mesh is constructed automatically (figure (3)) and stress intensity
factors are computed using the extraction procedure described in /8/.
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figure 1: Domain and loads for model problem
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figure 2: Basic mesh for model problem
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figure 3: Elementary mesh for crude computation
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Next the error for various combinations of mesh and polynomial degree can be predicted
and the mesh can be refined for the final computation. In the following a typical commu-
nication between the user and the expert during these two steps is shown. The example
covers steps 4 and 5 of the eight steps described in the section on the rules for the optimal
mesh design. After each advise of the expert the user performs the indicated steps in the
analysis, the successful execution of the algorithmic programs being directly reported to
the expert system via the status file. This part of the analysis is covered by the sub-
set of the goal-tree as shown in figure (4). The description part of the rule base which
corresponds to the rules invoked in this subtree is given in the following.

Ti: perform hp-computation with optimal accuracy

T2: generate a final mesh

T3: perform a p-version FE-computation on final mesh

T4: generate an elementary mesh

T5 : extract critical data

T6: predict optimal combinations of mesh and p-degree

T8: make decision about final mesh

T9: refine elementary mesh

T16: start PREDICT-ERROR

T18 : move curser to left working pad, type EXIT , 'pop' window and start

13



REFINEELEMENTARY.MESH

T19: define loads, constraints and material properties

138: Do you want to achieve a high accuracy solution

T39: give range of polynomial degree (rule of thumb : it should be 2 to 4)

T40: choose NMIN-80 * NCORN , NMAX = 150 * NCORN (NCORN is number of
reentrant comers)

T41 : give range of polynomial degree (rule of thumb : it should be 3 to 6)

T42 : choose NMIN-150 * NCORN , NMAX = 500 * NCORN (NCORN is number of
reentrant corners)

T43: provide the increment in the degrees of freedom (10 steps from NMIN to NMAX is
reasonable)

144 : Is the desired accuracy in the predicted range

T45: type EXIT, 'pop' window and start' PREDICT-ERROR again

T47: find out optimal combination of p-degree and mesh

T48 : move curser to right working pad and select a polynomial degree on the lower left
envelope of the error curves

T49: select NDOF, which correspond to a favourable point. (NOTE : computational cost
grows about as NDOF**2!)
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T51 : press key F5 and type DISPLAY-PREDICTION (tell, when DONE)

T53 : adjust range of p-degrees and degrees of freedom

T54 : predict error for solutions with moderate accuracy (error in energy norm: 5 - 10 %)

T55 : predict error for solutions with high accuracy (error in energy norm : 1 - 5 %)

T56 : refine at each reentrant comer geometrically with the number of layers specified in
PREDICT-ERROR

T59: refine mesh,choose SEPERATE SINGULARITIES (1) and move curser subsequently
to all reentrant corners

160: Do you want to use the elementary mesh for your final computation

The inference engine displays after each request for an 'advise' the terminal task with
status 'UNKNOWN' farthest to the right in the goal tree. So the next terminal task to be
performed will be task 16:

Ezpert: YOU CAN SELECT ONE OF THE FOLLOWING OPTIONS:

STATUS , ADVISE , WHY , END , HELP, DONE

Uaer: ADVISE

Ezpert: Next task is T16: start PREDICT-ERROR

The user starts the error prediction module PREDICT-ERROR. This module gives the
message to the expert system that it has been started, i.e. the status of task 16 is changed
to 'TRUE'.

User: AD

15



Expert : Do you want to achieve a high accuracy solution (YES - NO) ?

User : YES

This internal task is an example of how 'hidden' branches can be opened and open branches
can be closed. The answer to this question invokes several rules of thumb, which help to
find reasonable input data for the optimization program. The answer 'YES' leaves the
status of all subtasks as it is, so the next subtask will be T41. An answer 'NO' would
change the status of T54, T39 and T40 to 'UNKNOWN' and of T55 , T41 and T42 to
'TRUE'. Thus the next subtask would be T39, a rule of thumb for 'moderate accuracy

solutions'.

User : AD

Expert : Next task is T41: give range of polynomial degree (rule of thumb : range from 3
to 6)

The optimization program needs the sequence of polynomial degrees and the sequence of
maximally allowed number of degrees of freedom, i.e. No in the formulation of the opti-
mization problem. The following communication sequence shows the 'reasoning'-capability
of the expert system, which explains, why it gives some advise. This reasoning is con-
structed from the sequence of father-goals starting with the next task, i.e T42 up to the
final goal.

User : AD

Expert: Next task is T42.: choose NMIN=150 * NCORN , NMAX = 500 * NCORN
(NCORN is number of reentrant corners)

User: WHY

Expert : T42 : choose NMIN=150 * NCORN , NMAX = 500 * NCORN (NCORN is.
number of reentrant corners) is necessary to predict error for solutions with high accuracy
(error in energy norm: 1.- 5%)

User: WHY

Expert : T55 : predict error for solutions with high accuracy (error in energy norm : 1 -
5%) is necessary to predict optimal combinations of mesh and p-degree

User: WHY

Expert : T6 : predict optimal combinations of mesh and p-degree is necessary to generate
a final mesh

User: WHY

16



Expert : T2: generate a final mesh is necessary to perform hp-computation with optimal
accuracy

User: WHY

Expert : T1 : perform hp-computation with optimal accuracy is the final goal

The user chooses now NMIN = 1500 , NMAX = 4000 and an increment of NDELT = 400
and gets after the optimization a plotted output of the prediction curves. This state is
shown in figure (5).

User: AD

Expert: Is the desired accuracy in the predicted range (YES - NO) ?

The prediction module does not only compute one optimal combination of polynomial
degree and mesh but it shows the user a variety of possibile optimal choices, thus giving
him many options for his final decisions on the mesh construction. The user will answer
this question with 'YES', because in our model problem the rules of thumb on the choice of
polynomial degree and the range of degrees of freedom were right. An answer 'NO' would
change the status of subtasks T45, T43, and T51 to T53 to 'UNKNOWN' thus entering
a 'loop' to adjust the input data which led to the rejected result. With the acceptance of
the predicted error the next step is to inquire about the mesh which corresponds to the
desired combination of error and cost of the computation.

Ezpert : Next task is T48: select a polynomial degree on the lower left envelope of the
error curves

Uaer: AD

Expert : Next task is T49: select NDOF (NOTE : computational cost grows about as
NDOF**2!)

The next step is now to enter the interactive refinement-module and refine the mesh
according to the advise given by the error prediction. This could, of course, be performed
completely automatically, but it seems favourable to leave the user the choice to modify
the suggested mesh design. He may, for example, not be interested in the solution in
areas near some of the singularities, thus refineing there less than suggested by the error
prediction, which always tries to ballance the error in the whole domain of computation.
The local refinement is performed simply by providing the node number of the refinement
center and the number of element layers to be created there. The mesh after refinement
is shown in figure (6).
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Now the loads, boundary conditions and material properties can be specified and the final
computation can be performed.

Numerical results

In a practical application of the hp-expert system only one computation on a final mesh
has to be performed, assuming that the error prediction estimates the true error reasonable
accurate. In order to show the behaviour of the system in a wide range of combinations
of computer cost and accuracy, , we performed here finite element computations for all
meshes and degrees as specified in an error prediction for p ranging from 2 to 5 and the
number of degrees of freedom ranging from 400 to 4000. The predicted error is shown in
figure (7). The exact energy was estimated by extrapolation on an extremly refined mesh
and high polynomial degree to U =0.0367809. Figure (8) shows the exact error in the
energy norm for all computed combinations of mesh and polynomial degree. Comparing
figures (7) and (8), it can be seen that the real error for a certain p-degree levels off earlier
than the predicted error. This seems to be due to the fact, that the error predictor neglects
the error in 'smooth' parts of the solution , which are still significant for low p-degrees.

However 8 of 10 optimal points ( points at the lower left envelope in figure (7) which are
marked by circles in figure (8)) turn out to be really the best meshes for the specified
number of degrees of freedom, the remaining two meshes having only mildly larger error
than the actual best combinations. It should be mentioned, that the optimal meshes
constructed in the feedback process, converge at an exponential rate , which shows, that
the feedback really yields optimal mesh design.

By this feedback process it is possible to construct a mesh, which yields an accuracy in the
energy norm of about 2% for 3000 degrees of freedom. Extrapolation from the elementary
mesh shows, that this accuracy could be obtained with a quasiuniform mesh using linear
elements (assumed convergence rate 6 = .25) with about 1.e7 degrees of freedom. An
adaptively constructed mesh, using the h-version with linear elements (convergence rate
6 = .5) should yield this accuracy with about 34,000 degrees of freedom. About the same
amount of dofs would be necessary for a pure p-version on the elementary mesh. From
these estimations it can be seen, that about one order of magnitude in the number of
degrees of freedom is gained compared to an adaptive h-version or a pure p-version. So
roughly two orders of magnitude in storage and computational time is gained, if high
accuracy solutions with an error in the range of 1 to 2% are desired.
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The additional cost for the feedback is negligable. On an Apollo 420 the overall time
for the computation on the elementary mesh (p = 1,2,3) together with graphical mesh
generation, the sequence of optimizations for p = 2,3,4,5, No from 400 to 4000 in steps
of 200 degrees of freedom and the construction of a refined mesh with 2985 dofs was less
than 800 CPU sec, whereas the final computation on the refined mesh with p = 5 took
more than 4000 cpu seconds.

Moreover, it should be mentioned, that the human time is completely independent of the
desired accuracy, a situation, which is totally different from conventional finite element
analysis, where higher accuracy can only be achieved by time consuming construction of
refined meshes. Only the basic mesh has to be constructed by human interferance and
after this , only decisions about the progress of the analysis, guided by the advise of the
expert system have to be made.

SUMMARY

The hp-version of the finite element method is a newly developped technique to achieve
high accuracy in the results at low cost of computational time and storage requirement.
Combining local mesh refinement and increase of the polynomial degree it shows expo-
nential rate of convergence even in the presence of singularities in the exact solution. It
has been shown in this paper, that a simple expert system with mathematical knowledge
and heuristic rules for the optimal mesh design provide a frame to use the hp-version for
practical engineering problems. The expert system monitors the progress of the analysis,
guides the user through the various steps and is able to reason about its own advise. It is
thus a prototype for a more general expert system which should help the user throughout
a complete finite element analysis.
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APPENDIX: SOME MATHEMATICAL PRINCIPLES OF THE HP-VERSION

The crutial step in the feedback analysis is the prediction of the error (step 4). This is the
'deep knowledge' which shall be described in this appendix.

Let us consider the plain (strain) elasticity problem on a polygonal domain fl with ho-
mogenious material, elasticity module E and Poissons ratio 0 < Y < 1/2. The vertices of
0" shall be denoted by A. , the internal angle at A. by wi .

For simplicity, we will assume, that no body forces are present. In a neighborhood S of
the vertices A. the exact solution of the problem can be written as

Qd

U0 =E K,4 ii.,(rj)g,(9 (0)+ u,, (1)

where (r., 9.) are polar coordinates with respect to A. ,, .(r), ,g.- (9.) are a-priori known
functions independent of uo (depending on w ), K., (scalars) are stress intensity factors
(dependent on uo ) and wQ,,i is an analytic function on Si\A. which is smoother than the
first term on the right hand side of (1).. Q. is a positive integer which will be chosen for
our practical purposes as 1 or 2. For more details, see /9/,/10/, /11/.

The function g,, (0) is analytic up to the boundary of S and Oi. (r) - Re(r*." log' (r.)).(a,
are in general complex numbers with positive real parts and Re(of.+ 1) >_ Re(crj). Hence
the first terms in (1) are the most singular ones. For the way to compute stress intensity
factors K, we refer to /8/.

Let us now assume, that the polynomial degree of all the elements is the same. It has been
shown /12/, that under assumptions, which are always satisfied in engineering problems, for
a proper mesh A (p) depending on p the error of the finite element solution ups measured
in the energy norm decays exponentially. More precisely

Hell, = Ilu, 5 - UI -<s ; p -+ oo (2)

where a > 0 and N is the number of degrees of freedom.
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figure 9: Example of a geometric mesh with two refinement layers

The error in particular elements has two essential parts. The local one depending only on
the solution in the given element and the global one which reflects the influence of the error
in the entire domain (so called pollution error). The global error is (for properly designed
meshes) smaller than the local one. If an element is not adjacent to any vertex, then the
local error of the (p-version) finite element method is of the order

_C ON"

where N, is the number of degrees of freedom associated to the element whereas the error
is of order N,- 0 when the particular element has a vertex in a corner of the domain.
Hence the decay of the error is more rapid in areas far from comers of the domain than in
the neighborhood of the comers. Therefore only proper refinement in the neighborhood
of comers is needed while in the elements not adjacent to comers high accuracy can be
achieved only by increasing p. For practical engineering accuracies we can treat convex
corners as no corners (provided that the boundary condition is the same on both sides of
the vertex).

So the proper mesh A(p) is geometric with refinement only in the neighborhood of every
reentrant corner. An example of such a mesh with 2 layers at AD is shown in figure (9).
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It has been shown, that the optimal number n of layers of elements increases with the
polynomial degree p, that the optimal ratio of the geometric mesh is independent of the
strength of the singularity a, p and the number n of layers and has a magnitude of .15
(see /6/,/12/). Thus a very strong grading towards the singularity is obtained.

If the mesh is fixed (with different numbers of layers) and the polynomial degree p increases,
then the error behaves as schematically shown in figure (10). For each fixed number of
layers a typical reverted S-curved behaviour of the error is observed. We see the preasymp-
totic phase (curved down), when the error decays exponentially and the asymptotic phase,
when the error decays algebraically ( straight line). For theoretical results we refer to

Lii

0.

0

=n=2

G) n =3

a log MN

'a'i Number of degrees of freedom N

figre 10 Ilellj in dependence of the number of degree of freedom for different number
of layers n
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Let us now investigate the error in critical elements, i.e. elements adjacent to reentrant
comers, in detail. Because the function g,, in (1) is smooth, the error behaviour near
A, is qualitively the same as if g,, = 1. Hence, the error will be essentially the same
as in a one-dimensional setting in the interval (0, B) with the weight z expressing polar
coordinates. Yet, the hp-version in one dimension has been studied extensively /6/ and
the error analysis can be adopted to the two dimensional case of our problem near the
singular points /4/.

To show the basic principles, let A be the one dimensional mesh on I (0, B).

A:o=Zo <zl <z 2 <... <zu =B

where

z,:Bq"- 1 , q<1

and denote

Assume that f = e" and define

E(0,p, q, M) = (inf ( - W')2 dX) 1 /2  (3)
0

where the infimum is taken over all functions w E H1 (I) , w is a polynomial of degree p
on I,i = 1,...,M and w(zi) (z) .

We have now

Theorem:

E(O, p,q, M) = CBO [ 2O- 1 + r , 12(- )(_q'q,1 12 4
p4O p2 O 2

where DI (f) < C < D2 (,O) with D, independent of M and p. (See /4/ for the proof).
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Let us now return to the error in a critical element e, having a vertex in the vertex A,
of the polygonal domain. (see figure (11)). We will assume, that the exact solution to be
approximated is

K r"'O (0) + K 2 r.'i 2, (0)

Furthermore, let

2P? -= C , E: ,j'(j ,~,~ (5)
j,-

w, is the angle of the critical element at 4 and B, is the radius of the smallest circle
centered at 4. covering the element.

figure 11: Scheme of elements at vertex A,
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Expression (5) is an error functional and will be called error predictor. It can be seen
in the numerical example, that pi reliably gives all characteristics of the error behaviour
depending on M and p.

The value q will be chosen of the order .15 which is the optimal value for one dimensional
problems.

As has been stated we will asume that the decisive areas for the accuracy are the critical
elements which have to be refined. Hence we will assume that the only error is in these
elements and that the stress intensity factors are known.

For given p and number of layers n, = M. *- 1 in the t(i) elements adjacent to the critical
vertices 4,, i a 1, ... , a we will use the error prediction

0 t(M 2
p2 (p,M,) = Cr w,, 1  KjE(y~~,jL, (6)

iml IMI Y=l

where K, are the (known) stress intensity factors in the vertex A. and ai. the exponents
of the singular functions in (1).

The number of degrees of freedom over all the refined mesh will be denoted by

N (p, M,,i- 1,.8)

Assuming that the computational work is a function of N only, we can formulate the
following optimization problem:

Given an upper bound No of the total number of degrees of freedom find p and M, so that
it minimizes (6) under the constraint

N(p, M, i- =l,...,8) <__ No

For practical purposes, p can be restricted to a maximum degree p,... and it is also
reasonable to restrict the number of layers. A possible choice for the maximally allowed
number of layers is M,. = 2p,.. as it was shown in /12/, that the optimal combination N
of M and p in the case of a single crack-tip singularity is given by M = p.

With these restrictions the optimization problem is finite and various methods for con-
strained, finite optimization could be used. Yet it turns out that (6) has often many local
extrema so that the exact optimum will be hard to find. Nevertheless it is not necessary
to find the minimum exactly because various simplifications in obtaining (6) have been
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made. A simple heuristic algorithm, which has been described in /4/ gives in all our test
examples nearly optimal results with only minor computational effort.

Finally, the constant C in (6) has to be estimated to get not only a qualitive but also
a quantitive prediction of the error for different combinations of mesh and polynomial
degree. This can be done by a calibration of the predicted error on the crude mesh for low
p-degrees. For example we can compute the solutions for p = 1 and p = 2 or p = 1, 2,3
on the elementary mesh and determine the approximate error by extrapolation, assuming
that

Ilell = (7)

for the p-version on a fixed mesh where 6 depends on the smoothness of the solution.
Experience shows, that for low p and coarse meshes, 6 = .70 to 6 = .75 gives reasonable
results in most practical cases.
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